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A b s t r a c t -  Transient laminar forced convection within the thermal entrance region of parallel-plate channels is analytically 
solved for by making use of the Generalized Integral Transform Technique (GITI) and mixed symbolic-numerical computation 
(Mathematica 3.0 system). The physical situation involves a periodic variation in time of the fluid inlet temperature, together with 
a fifth kind boundary condition at the channel walls that includes external convection and wall thermal capacitance effects. A 
mixed symbolic-numeric algorithm is constructed, which provides fully automatic derivation of all the analytical steps and offers 
a straightforward visualization of the numerical results, in both tabular and graphical forms. Amplitudes and phase lags of the 
system thermal response are then presented and interpreted, while critically compared with previously reported results, c~ Elsevier, 
Paris. 

periodic convection / integral transforms / symbolic computation / cooling of electronics / hybrid methods 

R~sum~ - -  Convection forcee laminaire p~riodique : solution utilisant le calcul symbolique et les transform~es int~grales. La 
convection forc~e laminaire transitoire ~ I'entr~e thermique d'un canal form~ par deux plans parall~les est r~solue analytiquement 
au moyen de la technique de la transformee int~grale g~n~ralis~e (GITT), en utilisant un m~lange de calcul symbolique et 
num~rique (~ I'aide du Iogiciel Mathematica 3.0). Les conditions impos~es correspondent, d'une part, ~ une variation p~riodique 
de la temperature du fluide ~ I'entr~e et, d'autre part, ~. une condition limite ~ la paroi du canal, qui inclut la convection externe 
et les effets dus ,~ la capacit~ thermique des patois. Un algorithme m~lant calcul symbolique et num~rique est construit. II permet 
d'obtenir automatiquement les r~suflats num~riques sous forme tabul~e ou graphique. Les amplitudes et les d~phasages de la 
r~ponse thermique du syst~me sont repr~sent~es et interpr~t~es. © Elsevier, Paris. 

convection periodique / transform~es int~grales / calcul symbolique / refroidissement de composants ~lectroniques / m~thodes 
hybrides 

Nomenclature 

a* 

B i  

e 

Cp 

d 

De 

fluid-to-wall thermal capacitance 
ratio (= p ep)f d/(p e)w L) 
equivalent Biot number 
(: h~ d/kf) 
wall specific heat . . . . . . . . . . . . . . . .  k J .kg - l -K  -1 
fluid specific heat . . . . . . . . . . . . . . . .  k J . kg - l .K  -1 
half distance between the parallel 
plated . . . . . . . . . . . . . . . . . . . . . . . . . .  m 
equivalent diameter of the channel m 

* cotta@serv.com.ufrj.br 

h~ equivalent heat transfer coefficient 
between inner wall and ambient 
fluid 

i imaginary number x/L-] 
kf fluid thermal conductivity . . . . . . . .  W.m 1.K-1 
L wall thickness . . . . . . . . . . . . . . . . . . .  m 
rh mass flow rate . . . . . . . . . . . . . . . . . .  kg.s -1 
N normalization integral or trunca- 

tion order of the system 
Prandtl  number (=  (~/a)) 
Reynolds number = ( U m  Dh/~) 
temperature K or °C 

Pr  
Re 
T 
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T(x,y, t)  

T~ 
T~o 

ZxT(y) 
AT~ 

t 

Gin 

u( . )  

X 

y 

temperature distribution along the 
channel K or °C 
ambient temperature K or °C 
eenterline inlet temperature K or 
°C 
inlet temperature amplitude profile 
eenterline inlet temperature ampli- 
tude (= T~0 - T~) 
time variable . . . . . . . . . . . . . . . . . . . .  
velocity profile across the plates .. 
mean velocity . . . . . . . . . . . . . . . . . . .  
dimensionless velocity profile 
(= u(y)/Um) 
axial coordinate . . . . . . . . . . . . . . . . .  
normal coordinate . . . . . . . . . . . . . . .  

Greek symbols 

c~ fluid thermal diffusivity 
(= (kf/p cp) . . . . . . . . . . . . . . . . . . .  
inlet frequency . . . . . . . . . . . . . . . . . .  

AO(rl) dimensionless temperature ampli- 
tude profile across the inlet 

&j function; for i = j ,  5 = 1; for i 7~ j ,  
---- 0 (ij or any other indexes) 

(P phase lag 
r/ dimensionless normal coordinate 

(= y/d) 
eigenvalue 

t~ kinematic viscosity of the fluid . . .  
O(~,rhr) dimensionless temperature 

O(~,rl) quasi-steady dimensionless temper- 
ature defined by equation (4) 

p density of the working fluid . . . . . .  
pw equivalent density of the wall . . . . .  
# viscosity . . . . . . . . . . . . . . . . . . . . . . . .  
r dimensionless time (= c~ t/d 2) 

dimensionless inlet frequency 
(= d ~ ~ /~ )  
dimensionless axial coordinate 
(= (x/D~) (D~/d)~/Re Pr) 

Subscripts 

c centerline value 
f working fluid value 
n, k order of the eigenvalue problem 
w wall value 
oc ambient value or value at infinite 

S 

m . s - - 1  

n l , s -  1 

In  

m 

Il l  2" S -- 1 

Hz 

m 2 . s  - 1  

kg.m -3 
kg.m 3 

N.s.m-2 

1. I N T R O D U C T I O N  

Unsteady forced convection is an impor tant  topic 
in the field of heat  transfer  technology, in relation 
with the automat ic  control of heat  exchange equipment.  
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Unsteady problems, with respect to their  dependence 
with time, may be classified as transient  or periodic. 
Clearly, the s teady part  of the solution of a periodic 
problem should be simpler than its transient  (or 
complete) solution, which is often very involved. Yet, in 
many practical  applications,  such as the flow and heat  
transfer associated with vibrat ing components,  some 
types of engines, heat  exchangers, gas turbines and so 
on, the s teady par t  of the periodic solution is most 
important .  Previous research work on periodic forced 
convection inside ducts  have focused on the development 
of solution methodologies for the governing flow and 
energy equations [1 8], with a clear preference for 
analyt ic-based approaches, in light of the difficulties in 
numerically handling high frequency oscillating thermal  
system responses. 

Unsteady heat  transfer for fully developed laminar 
flow inside the thermal  entrance region of a parallel  
plate channel, with a fully developed parabolic  velocity 
profile and subjected to a sinusoidally varying inlet 
temperature ,  is considered here. A general boundary  
condition of the fifth kind, tha t  accounts for the effects of 
both  external  convection and wall thermal  capacitance, 
is imposed at  the channel walls. This part icular  problem 
was also studied by Kakag et al. [7] and Cheroto et al. 
[8], and in both contributions the problem was solved 
by using the generalized integral t ransform technique 
(GITT)  [9 11], but  using different approaches to the 
same hybrid numerical-analyt ical  solution methodology. 

Kakag et al. [7] s tudied theoretically and exper- 
imental ly a laminar  forced convection problem in tile 
thermal  entrance region of a rectangular  duct,  subjected 
to a sinusoidally varying inlet t empera ture  and a fifth 
kind boundary  condition at  the walls. The theoretical  
analysis was performed by using tile GITT,  instead of 
a t t empt ing  a formal exact solution, in order to alleviate 
the need for solving a complex non classical Sturm- 
Liouville problem, for which a direct solution was not 
yet available. Also, experiments were performed in an 
appara tus  previously designed and built  by Kakag et al. 
[6 7]. The theoret ical  results were then compared with 
the exper imental  findings to verify the approach, with 
excellent overall agreement. 

In Cheroto et al. [8] the same problem [7] was studied 
by the GITT,  but  in this la t ter  work, an al ternative 
formulation was developed, in which the problem was 
divided into real and imaginary formulations, and the 
analysis was performed by using these two coupled 
similar problems. 

In the present work the method of solution is 
still the G I T T  [9-11], but  now made more flexible 
with the choice of a simpler auxil iary eigenvalue 
problem. Another  difference and the main original 
aspect  of this s tudy is, in fact, the special feature of a 
symbolic computa t ion  implementat ion,  such as recently 
achieved for the simpler slug flow si tuat ion [12], by 
employing the Mathematica 3.0 system [13], used to 
handle all the analyt ical  steps of the problem solution 
procedure, including all the integral t ransformations and 
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operational manipulations. The use of the Mathematica 
system [13] for solving heat transfer problems is 
a new and growing tendency since it has many 
advantages in dealing with hybrid methods, such as 
the proposed integral transform method. The main 
advantages in the use of hybrid symbolic-numerical 
computational platforms are the drastic reduction in 
analytical development effort and the straightforward 
integrated manipulation of data, analytical expressions, 
and numerical algorithms, including simple to use 
graphical visualization tools, which in combination lead 
to a much faster path to the interpretation of the 
final results. For a complete description of symbolic- 
numerical computations in the heat transfer field with 
integral transforms and Mathematica, the reader is 
referred to [11, 14]. 

2. PROBLEM F O R M U L A T I O N  

We consider unsteady forced convection with hydro- 
dynamic fully developed laminar flow inside the thermal 
entrance region of a parallel plate channel, subjected to 
a periodic variation of the inlet temperature, as repre- 
sented in fi9ure 1. A general boundary condition of the 
fifth kind that accounts for both external convection 
and wall heat capacitance effects is considered. Axial 
conduction along the fluid, viscous dissipation and free 
convection are not taken into consideration and physi- 
cal properties are assumed to be constant. The problem 
can be represented by the energy equation and related 
boundary and inlet conditions as: 

OT ~T ~ZT 
+u(y)-~x = c ~  i f O < y < d , x > O , t > O  (la) 

T = T~ + AT(y) e gzt if x =O, O < y < d (lb) 

3T 
~y 0 if y O, x > 0 ( lc)  

3T L ~T h ~ ( T - T ~ ) + k ~  -~y +(pc)w  ~t = 0 i f y = d ' x > 0  

(ld) 

where the variables are in dimensional form and 
T -- T(x,y , t ) .  

t Flow Y x 2d 

Unheated entry region Periodic heat Impu! 
[heated section] 

Figure 1. Geometry and coordinate system for theoretical 
analysis. 

Equation (ld) represents the fifth kind boundary 
condition. The first term is the convection term between 
the walls and the surrounding fluid (air), at ambient 
temperature T~, with h~ being the equivalent heat 
transfer coefficient, which may also account for the 
transversal thermal resistance of the channel walls. 
The last term represents the wall thermal capacitance 
effect. Details on the derivation and calculation of the 
appropriate values of h~ are given in [I5]. 

The problem is now rewritten in dimensionless form 
by using the following dimensionless groups: 

y 
~ = ~  

= ( : c / D e )  (D~/d)~/(Re P r )  

ctt 
T - -  d 2 

T - T ~  
A% 

h¢ d 
B i -  

jf 

where 0 - 0(~, V, r). 

fl d ~ X?-  
C~ 

a* -- (p ep)f d 
(p C)w L 

u(v) - ~(~) 
V m  

Ao(~) - AT(~) 
At~ 

(2a-i) 

By making use of the dimensionless groups given 
by equations (2) in the energy equation and the related 
boundary conditions, equations ( l a d ) ,  the problem can 
be written in dimensionless form as: 

00 00 320 if 0 < r/< 1, ~ > 0 (3a) 
a-T + g(n) 0~ - an 2 

O = AO(rl) e ~n" if ~ = 0, 0 ~< r] ~< 1 (3b) 

3O 
- -  = 0 i f r l = 0 , ~ > 0  (3c) 3V 

Bi 
0 0  1 3 0  

O+~---+a*or] O~-- -0 i f r l= 1'~ > 0  (3d) 

Note that if a*, the fluid-to-wall thermal capacitance 
ratio, goes to infinity, the wall capacitance effects 
become negligible. 

3. P E R I O D I C  S O L U T I O N  

We are only interested in the periodic solution of the 
problem, for sufficiently large values of the time variable, 
i.e. after the initial transients have disappeared. For such 
cases, a periodic solution can be assumed as: 

o(~ , . ,  ~) = ¢~" ~(~ , . )  (4) 

for the decay of the inlet condition, equation (3b), within 
the duct. Upon substitution of the periodic solution, 
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equation (4), the problem given by equations (3) 
simplifies to the following problem for O(~, r/): 

a 2 0  u OR 
o~r/2 (rl)-~-~ - iF2R = 0 if 0 < r / <  1, ~ > 0 (5a) 

O = A O ( r / ) i f ( = 0 , 0 ~ < r / ~ < l  (5b) 

aR 
Or I 0 if r /=  0 (5c) 

--  O0 1 B i O + ~ - +  a-;- i K 2 0 = 0 i f r / = 1  (5d) 

4. SOLUTION METHODOLOGY (GITT) 

The approach used here is the generalized integral 
transform technique (GITT) [9-11]. The use of the 
GITT allows for the selection of an appropriate auxiliary 
eigenvalue problem, without being restricted to the 
specific problem that would allow for a transformable 
solution. A formal exact solution for this problem 
is achieved by considering the associated complex 
eigenvalue problem, that includes both complex terms 
in the original equation and in the boundary condition. 
However, its solution is a complicated matter  by itself. 
In [7, 8], the eigenvalue problem was chosen as the 
same that provides the exact solution of the classical 
Graetz problem, defined in the real domain, with good 
performance as a basis of the proposed expansion. Here, 
an even simpler eigenvalue problem is considered, since 
all the required manipulations are automatically worked 
out by the symbolic computation system: 

d2Yn 2 
d,q2- + An Y~ = 0 if 0 < rl < I (6a) 

-- 0 if r 1 = 0 (6b) 
d~? 

B i Y ~ + ~  = 0 i f  r / = l  (6c) 

for Yn -- Y~(rl), and where - ' Yn s and An'S are the n-th 
normalized eigenfunetion and eigenvalue, respectively, 
and the normalization is defined as 

~,~(r/) = Yn(r/) (6d) 

The normalization integral is given by: 

~01 N,~ = Yn2(~) dr 1 (6e) 
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The solution for the eigenvalue problem (6aoc) is 
given by: 

Y.(r/) = cos(Anti) (6f) 

where the eigenvalues are obtained from the nonlinear 
equation 

-An sinAn + Bi cosA,~ = 0 (69) 

By solving the transcendental equation (6g) above 
we can readily find the A~'s. 

The auxiliary eigenvalue problem allows the defi- 
nition of the integral transform pair (inversion and 
transform formula) for the function O(~,V), given by: 

oo 

- -  E y n (  - -  O(~,V ) - ~ -  ?]) On(~) if 0 < r / < 1 
n = l  

(inversion formula) (7a) 

and 

R~(() = Y~(rl) R(~,~) (transform formula) (7b) 

By making use of the integral transform pair and 
operating on equations (5a-d) and (6a-c), the periodic 
problem and the eigenvalue problem respectively, the 
integral transformation can be formulated, to get the 
transformed equation as: 

c~ 

i D Y n ( 1 ) E  Yk(1) Rk(~) - A~ R~(~) a* 
k= l  

_ £ dOk(~) 
d~ 

k = l  

- -  Q , ~ k  - i ~ R ~ ( ~ )  = 0  (8) 

Note that the integral transformation eliminated the 
problem dependence in r/. Now we can rewrite equation 
(8) in matrix form as: 

where 

and 

with 

Q dO = B R (9a) 

Q = {Q~k} (9b) 

B = {B~k} (9c) 

~0 
1 

Qr~k = Y.(rl) U0?) Yk(rl) dr/ (9d) 

Bnk = --(A2k + i S?)&~k i ~ Yk(1) Yn(1) (9e) a* 
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where 5 represents the Kroneker delta. Rearranging,  

where 

d ~  
- A O (9 f )  

d~ 

A = Q - 1 B  (9g) 

We need now to t ransform the inlet condit ion by 

operat ing on equation (5b) with Y~(r/) dr/, to obtain: 

with 

m 

o~(0) = f~(r/) (10a) 

~0 
1 

fn(r/) = Yn(r/) AO(r/) dr/ (10b) 

Finally, the t ransformed system is defined by 
equations (9f, 10a), and this linear initial value problem 
can be analyt ical ly  handled by obtaining the related 
complex eigenvalues and eigenvectors of the complex 
coefficients mat r ix  A.  The inversion formula (7b) is 
then recalled to reconstruct  the desired potentials.  

5. SYMBOLIC COMPUTATION 

6. RESULTS AND DISCUSSIONS 

Initially, convergence tests and comparisons were 
performed to verify the reliabil i ty of the present 
results. The first two tables present the convergence 
behavior of the centerline tempera ture  ampl i tude  for 
two different cases of Biot number,  Bi = 10 and 
105, respectively (tables I and I/). The dimensionless 
t empera tu re  ampl i tude  profile across the inlet, AO(r/), 
was taken as parabolic,  approximat ing the actual  
physical s i tuat ion encountered in refs. [7, 8]. For the 
case of large Biot number (table I), the convergence 
is very fast and the results are fully converged with 
six terms in the expansion (N = 6), up to the fourth 
significant digit. The posit ions ( were chosen mostly 
in the beginning of the duct,  where the convergence 
behavior is expected to be worse. 

TABLE I 
Convergence of the centerline temperature amplitude 

for Bi = 105, g? = 0.06491, a* = 5.0.10 -5, 
and AO(r/) = 1 --r/2. 

0.01 

N = 3  0.9864 

N =  6 0.9866 

N =  9 0.9866 

N =  12 0.9866 

0.1 0.5 

0.8561 0.4055 

0.8562 0.4056 

0.8562 0.4056 

0.8562 0.4056 

1.0 

0.1580 

0.1580 

0.1580 

0.1580 

L_ 

f9 

m 

c 
~ m  

m m  

O 

All the above and intermediate  manipulat ions  are 
automat ica l ly  accomplished by the symbolic imple- 
menta t ion  on the Mathematica system. The symbolic 
computat ions  were performed by adapt ing  one of the 
notebooks available in [11], where the eigenvalues, eigen- 
vectors, normalizat ion integrals, the coefficients matr ix  
A,  and all the remaining terms are calculated by Math- 
ematica 3.0 in order to generate Abs[O[Gr/]], which 
represents the ampl i tude  of the t empera tu re  distr ibu- 
t ion O, and Arg[O[Gr/]], which represents the phase 
angle (phase lag) of the t empera tu re  dis t r ibut ion O. 
The 3D plots are easily generated as outputs  and in 
each of them the ampl i tudes  and phase angles are rep- 
resented. In these plots, the vertical  distances represent 
the ampli tudes.  The phase angles are represented by 
the color variat ion along the 3D surface, not visualized 
in the presentat ion tha t  follows (which is shown in a 
gray scale), but  readily reproducible from the notebook 
presented in the Appendix.  As the angle moves around 
the circle, the color of the surface will go from red to 
blue, green, yellow, and back to red again. Therefore 
the plots provide all information about  the t empera tu re  
oscillations required for its physical interpretat ion.  

A copy of the Mathematica notebook used here in 
order to get the  final results for ampl i tudes  and phase 
lags is presented in the Appendix.  

TABLE II 
Convergence of the centerline temperature amplitude 

for Bi = 10, .(2 = 0.06491, a* = 5.0.10 -5, 
and AO(r/) = 1 -- r/2. 

0.01 

N =  3 0.9112 

N =  6 0.9943 

N =  9 0.9835 

N =  12 0.9881 

N = 1 5  0.9856 

N =  18 0.9872 

N =  21 0.9861 

0.1 0.5 

0.8175 0.3232 

0.8578 0.3806 

0.8520 0.3886 

0.8559 0.3948 

0.8544 0.3966 

0.8558 0.3988 

0.8551 0.3995 

1.0 

0.0999 

0.1363 

0.1441 

0.1486 

0.1505 

0.1521 

0.1529 

For smaller values of the Biot number the conver- 
gence behavior became worse, which is an indication 
tha t  a filter should be employed for convergence im- 
provement,  if necessary. This behavior is due to the 
presence of the source te rm represented by the wall 
thermal  capaci tance term, which is not accounted for 
by the eigenvalue problem boundary  condition. For 
larger Biot numbers, this effect looses importance with 
respect to the external  convection term. For this case 
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(Bi  = 10), the results with N = 21 in table H are 
converged to :El in the third significant digit, which is 
more than sufficient for the physical interpretation of 
the thermal response of the system. 

In order to validate the present approach, compar- 
isons were made between the present work and two 
previous ones. First, for the case when the Biot num- 
ber tends to infinity, but  now with a linear inlet profile 
(AO(rj) = 1), the results were compared with the results 
of reference [8], as presented in table III. 

TABLE III 
Comparison between the present work and reference [8] 

for the convergence of  the centerline temperature 
ampli tude with B i  = l 0  s, ~ = 0.06491, 

a* = 5.0.10 -5, and AO(r~) = 1 

z / D e  N = 5 N = 10 Ref. [8], Nc = 5 

1 0.9990 0.9990 0.9990 

3 0.9282 0.9278 0.9277 

6 0.7475 0.7472 0.7471 

9 0.5912 0.5909 0.5908 

12 0.4668 0.4666 0.4665 

15 0.3685 0.3684 0.3683 

18 0.2910 0.2908 0.2908 

21 0.2297 0.2296 0.2296 

24 0.1814 0.1813 0.1813 

27 0.1432 0.1431 0.1431 

30 0.1130 0.1130 0.1130 

33 0.0892 0.0892 0.0892 

36 0.0705 0.0704 0.0704 

39 0.0556 0.0556 0.0556 

the results of the present work and ref. [7] were too small 
to be noticeable in graphical form. The number of terms 
N = 15 was the maximum shown in table IV, but was 
already enough to offer 2 to 3 significant digits accuracy 
along the whole thermal entry region. Again, a filtering 
solution, as generally employed in solutions through the 
integral transform approach [9 11], can considerably 
enhance this convergence behavior, although it was not 
found necessary for the objectives of the present work. 

TABLE IV 
Comparison between the present work and reference [7] 

for the convergence of the centerline temperature 
ampli tude with B i  = i0,  Y2 = 0.06491, 

a* = 5.0-10 .5 , and AO(~) = 1 

z / D e  N = 6  N = 9  N = 1 2  N =  15 Ref. [7], 
Nc = 60 

1 1 .0076  1.0008 1 .0008  0 . 9 9 7 7  0.9990 

3 0 .9216  0.9187 0 .9244  0 . 9 2 3 5  0.9222 

6 0 .7250  0.7301 0 .7375  0 . 7 3 8 5  0.7341 

9 0 .5612  0.5702 0 .5781 0 . 5 8 0 1  0.5743 

12 0 .4339  0.4447 0 .4526  0 . 4 5 5 0  0.4486 

15 0 .3354  0.3468 0 .3542  0 . 3 5 6 9  0.3504 

18 0 .2593  0.2705 0 .2773  0 . 2 7 9 9  0.2737 

21 0 .2004 0.2109 0 .2170  0 . 2 1 9 5  0.2138 

24 0 .1549  0.1645 0 .1699  0 . 1 7 2 2  0.1670 

27 0 .1196 0.1283 0 .1330  0 . 1 3 5 0  0.1304 

30 0 .0925  0.1000 0 .1041 0 . 1 0 5 9  0.1019 

33 0 .0716  0.0780 0 .0815  0 . 0 8 3 1  0.0796 

36 0 .0553  0.0608 0 .0638  0 . 0 6 5 2  0.0622 

39 0 .0428 0.0474 0 .0511 0 . 0 5 1 1  0.0485 

The dimensionless position z / D e  is employed in the 
comparisons with the results from reference [8]. Nc is 
the number  of terms used in the expansion proposed 
in reference [26], with a different eigenvalue problem. 
The convergence for three significant digits is at tained 
for N ~< 10 terms, and it is harder to achieve in the 
channel entrance, as expected. The comparison shows 
an excellent agreement between the two sets of results. 

In order to investigate more critically the accuracy 
of the present results, a more difficult case in terms of 
convergence is analyzed, for Bi  = 10. This comparison 
was made between the present work and the work by 
Kakag et al. [7], with the reference results presented in 
the last column, converged for Nc = 60 terms, where 
Nc denotes the number of terms from the expansion 
proposed in [7]. This comparison is presented in table I V  
below, and clearly shows that  convergence slows down 
considerably in this case, but the differences between 

6 1 8  

Now that the code is shown to be reliable for our 
present purposes, a series of 3D plots are presented, 
where the temperature amplitude and the phase angle 
are computed and shown. In these plots, the vertical 
distances represent the amplitudes. The phase angles 
are represented by the color variation along the 3D 
surface. As the angle moves around the circle, the 
color of the surface will go from red to blue, green, 
yellow, and back to red again. This effect is observed 
here on a gray scale only, but  is readily observable 
when employing the Mathematica notebook. The test 
cases selected have the following additional parameters: 
Bi  = 10, a* = 8.5-10 -a, and the inlet temperature profile 
is a parabolic one represented by AO(r/) = 1 - rj 2. The 
plots are for 0 ~< rj ~< 1, from tile center of the channel 
to the wall, and 0 ~< ~ ~< 5, where the value 5 represents 
a very large distance from the inlet, where the flow is 
essentially fully developed. 
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Figure 2. Temperature amplitude and phase Jag. ~ : 10, 
/-2=0.06491, a* =8.5.10 3 and AO(~l) = l - - r /2 .  
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Figure 3. Temperature amplitude and phase Jag. ~ = JO, 
Y 2 = 0 . 1 3 2 2 0 ,  a* = 8 . 5 . 1 0  3 and AO(r / )  = l - - r / 2 .  
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Figure  4. Tempera tu re  ampl i tude  and  p h a s e  la~. J? i  = ]O, 
Y2 = 1.0, a* = 8 .5 .10  . 3  and  AO(r~) = 1 -- r~ 2. 

The varying parameter is the dimensionless inlet 
frequency Y2, with Y2 = 0,06491, Y2 = 0.13220, and 
£2 = 1.0, respectively in figures ~, 3, and ~{. As can be 
noticed, the amplitude does not noticeably vary with 
Y2, only the phase angle. For a larger value of Y2, Y2 = 1, 
the change in the phase angle can be clearly observed. 
As Y2 increases, the change in the phase angle increases, 
thus further delaying the information sensed along the 
channel with respect to the inlet condition oscillation. 
All the results in the plots were obtained with N = 20. 

7. CONCLUDING REMARKS 

The procedure here developed was shown to be ef- 
ficient in the solution of thermally developing periodic 
{arced cca~ve~tk~m k f~Lte-~i-ag ~p~<se.~h c ~  tae ~<sa~id- 
ered and implemented in order to aIieviate convergence 
difficulties. The symbolic computation feature proposed 
through the Ma~hematica 3. 0 system is a new tendency 
and proved to be simple to use and also powerful in the 
solution of this class of problems. The graphics repre- 
sentation is easy to implement and markedly facilitates 
the physical analysis task. 
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APPENDIX 

This  appendix  presents the Mathemat i ca  note- 
book tha t  was implemented in order  to obtain the 
final results for the periodic forced convection prob- 
lem studied here. An applicat ion example is also pre- 
sented. Externa l  modules  were also employed, which 
are described in more detail  in [11, 14]. 

Statement of the dimensionless 
problem 

The temperature field is governed by: 

~ 0[~, q] + u[q] a~0[~, n] = =  a~,,0[~, n] 

The  bounda ry  condit ion at  q -- 0 is: 

a,0[~, q] = =  0 / .  q -~ 0 

The  bounda ry  condit ion at q = 1 is: 

an0[~, q] + Bi 0[~, 13] + I ~s 0[~, q] = =  0 / .  1] ---+ 1 

The  initial t empera tu re  is: 

010, q] = =  00 + 0 i  ~ + 02 q2 

Computational rules - GITT 

The  eigenvalues are computed  once and stored in 
the memory  by the rule: 

B[i_Integer, Bi_?NumericQ] := B[i~ Bi] 

= x/. FindRoot[Bi Cos[x] ----: x Sin[x], {x~ {i--1, i-~}K} 

MaxIterations --+ 30] 

The rule for eigenfunction is: 

~/[i_Integer][y_] :-- c[i~ Bi] Cos[g[i, Bi]y] 

where the normal izat ion coefficients c[i ,  Bi] are 
computed  once and stored in the memory  by the 
rules: 

c[i_Integer, Bi_?NumericO] := c[i, Bi] = 

(v~ Bi C~c[~[i, Bill) 

~/Bi + Bi 2 + ~t[i, Bi] = 

The rules for the coupling integral are: 

i 
A[i_, i_] .-- 8 ~[i, Bi] ~(4 B[i, Bi] ~ ~,[i][O] ~ 

+ 3  Bi ~/[i][l] 2 + 3 B[i,Bi] 2 (~[i][0] 2 - 2 ~/[i][112)) 

A[i_, j_] := 

3 (2 Bi (i + B i )  + B [ i ,  Bi] 2 +~t[j ,  Bi] 2) ~/[i][1] ~[j][1] 
(B[i, Bi] 2 - B[j, Bi]2) 2 

To improve efficiency we introduce the matrices: 

mA: = Table[All, j], {i~ n}, {j, n}] 

roB: = DiagonalMatrix[Table[l fl + B[i, Bi] 2, {i, n}]] 

lfl 
mC: -- * (DiagonalMatrix[Table[~[i]1[l], 

as Bi 

{i, n}]]. Table[~[i][l], {j, n}, {i, n}]) 

The rules generating the system of ordinary 
differential equations and the corresponding initial 
conditions are: 

ode : = 

Thread[Table[0[i]t[~], {i s n}] -----= Inverse[reAl 

• (mC - roB). Table[0[i][~], {i, n}]] 

ic: = Table[0[i][0] == (-2 Bi 02 ~/[i][l] + ~[i, Bi] 2 

((~i 0o + 2 02 + ~i 02) ~[i][i] + 01 (-~[i][0] + v[i][ 

+ Bi ~F[i][l])))/B[i, Bi]¢,{i, i, n}] 

6 2 0  
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The unknown integral transforms are: 

var :---- lable[O[i], {i, n}] 

Example 

First we have to assign values to the global 
parameters: 

B i =  10; f~= 1.0; as =8 .510 -3 ;  

O0= 1; Ol = 0 ;  8 2 = - - 1 ;  n = 2 5  

where we have employed a truncation order of 25 
terms. The ode problem is: 

problem = Join[ode, ic] 

The numerical solution in the axial range 
0 < { < 5 for the integral transforms are: 

SO1 = First[NDSolve[problem, vat, {~, 0, 5}]] 

Introducing these results into the inversion formula 
we obtain: 

0[~_, q_] = Sum[ll/[i][11 ] O[i][~], {i, 1, n}] /.  sol 

The temperature, the amplitude and the phase 
angle at ~ = 0.5 and q = 1 are: 

{0[0.5, 11, Abs[0[0.5, l]], Arg[0.5, 1]]} 

{ -0 .001673-  0.00505492 I, 0.00532458, -1.89041} 

The amplitude of the temperature oscillations 
Abs[0[~, 11] ] in 0 ~< ~ ~< ~1 and 0 ~< q ~< 1 are easily 
ploted by using the Mathematica function Plot3D. 
This plot may also include information for a phase 
angle by using a color scheme [1, p. 139], 2, p. 226]. 

We define the rules: 

Amplitude[z_Complex] := Abs[z] 

Phase[z_Complex] := Hue[N[Arg[z]) / (2 K)]] 

Next, the solution of the above problem is ploted : ~ . ,  

Plot3D[{Amplitude[8[{, q]l, Phase[O[{, nil}, 0, 5}, {n, 0,1}, ---- 

AxesLabel --+ {"~", "rl", "Amp" }, PlotRaage -+ All]; 
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The color plots are printed on shades of gray 
within the paper. On your monitor you will see colors 
that  appear as the angle moves around the circle. 
The vertical distances to the surface represent the 
amplitudes. The phase angle is represented by the 
color of the surface. Therefore this plot gives all 
information about the temperature oscillations. 
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